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Abstract The paper gives a highly condensed first introduction into robust statistics and some
guidance for the interpretation of the literature, with some consideration for the uses in geodetics
in the background.

Robust statistics is the stability theory of statistical procedures. It systematically
investigates the effects of deviations from modelling assumptions on known procedures
and, if necessary, develops new, better procedures.

Common modelling assumptions are those of normality and of independence of the ran-
dom errors. For both exist sophisticated theories with important practical consequences,
and specifically normality can be replaced by any other reasonable parametric model (cf.
Huber 1981, Hampel et al. 1986, and also Beran 1994).

As a simple example, let us consider n “independent” measurements of the same quan-
tity, for example a distance. In general they will differ, namely by what we now call the
“random error”, and the question arises which value we should take as the “best estimate”
of the unknown “true value”. This question was already considered by Gauss (1821; cf.
also Huber 1972), and he, noticing that he needed the unknown error distribution to an-
swer this question, turned the problem upside down and asked for that error distribution
which made a rule “generally accepted as a good one”, namely the arithmetic mean, op-
timal (in location or shift models). This led to the normal distribution as assumed error
distribution, and to a deeper justification (other than by simplicity) of the method of least
squares.

Less than a hundred years later, almost everybody believed in the “dogma of normal-
ity”, the mathematicians because they believed it to be an empirical fact, and the users
of statistics because they believed it to be a mathematical theorem. But the central limit
theorem, being a limit theorem, only suggests approximate normality under well-specified
conditions in real situations; and empirical investigations, already by Bessel (1818) and
later by Newcomb (1886), Jeffreys (1939) and others, show that typical error distribu-
tions of high-quality data are slightly but clearly longertailed (i.e., with higher kurtosis
or standardized 4th moment) than the normal. Gauss (1821) had been careful to talk
about “observations of equal accuracy”, but obviously real data have different accuracy,
as modeled by Newcomb (1886).

The implicit or explicit hope that under approximate (instead of exact) normality least
squares would still be approximately optimal - a belief still held by many statisticians
today - was thwarted by Tukey (1960; cf. also Huber 1981 or Hampel et al. 1986) who
showed among other things that already under tiny deviations from normality the mean
deviation - formerly much used as scale measure until the dispute between Fisher (1920)
and Eddington - was better than the standard deviation, despite its efficiency loss of 12
percent under strict normality. In fact, the (avoidable) efficiency losses of least squares
under high-quality data are more typically between 10 percent and 50 percent or even
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100 percent than between 0 percent and 10 percent (and are even bigger for the scale
estimate)(cf. Hampel et al. 1986).

So far we have talked about high-quality data obtained with greatest care and without
any noticeable gross errors or blunders. But real data normally contain gross errors; for
scientific routine data, not taken with utmost care, their fraction is typically between
1 percent and 10 percent (!). (Nobody is perfect. In some areas, like medicine, the
fraction of gross errors can easily be above 20 percent. But there are – rarely – data
sets of thousands of observations where nothing could be found wrong (C. Daniel, orally).
On the other hand, even fully automatic data recordings can contain transient effects or
occasional equipment failures. Cf. Hampel et al. 1986 or Hampel 1985.)

Gross errors often show themselves as outliers, but not all outliers are gross errors.
Some outliers are genuine and may be the most important observations of the sample. For
example, if a geodetic point seems suddenly to be in a different position, it may mean a
gross error of some sort, or it may mean a shift of the underground, and some redundancy
(or experience) is needed to distinguish these possibilities.

Outliers themselves – “data that don’t fit the pattern set by the majority of the
data” – are an illdefined concept, without clear boundaries; nevertheless they are a useful
concept as long as one does not forget that there is a continuous transition to “ordinary”
observations.

It is clear that a single outlier – if located sufficiently far away – can completely spoil
a least squares analysis. A common reaction to this danger is (subjective or “objective”)
“rejection of outliers”, although in principle outliers should be set aside for separate treat-
ment.

There is a considerable literature on “rules for rejection of outliers” (Barnett & Lewis
1994), but apart from the facts that some of these rules cannot even reject one distant
outlier out of 20 observations, and that the most commonly used rule (maximum studen-
tized residual, or Grubbs’s rule) can barely detect one distant outlier out of 10 (Hampel
1985), the basic philosophy given for the rules appears to be faulty, as has been stressed
repeatedly by eminent statisticians. Nevertheless, one might legitimately consider the
combined procedure “first reject all outliers according to some rule, then use least squares
for the remaining data” as a new estimation procedure designed to prevent disasters due
to distant gross errors. With “good” rejection rules which are able to find a sufficiently
high fraction of distant gross errors (which have a sufficiently high “breakdown point”, cf.
below), this is a viable possibility; but it typically loses at least 10-20 percent efficiency
compared with better robust methods for high-quality data (Hampel 1985). It is inter-
esting to note that also subjective rejection has been investigated empirically by means
of a small Monte Carlo study with 5 subjectively rejecting statisticians (Relles & Rogers
1977); the avoidable efficiency losses are again about 10-20 percent (Hampel 1985). This
seems ok for fairly high, but not for highest standards.

Soon after Tukey’s (1960) inspiring paper, the foundations for 3 closely related robust-
ness theories were laid by Huber (1964), Huber (1965) and Hampel (1968). There is no
space here to go into details; cf. Huber (1981) and Hampel et al. (1986). Some key con-
cepts are: gross-error model, a rather full (semi-)“neighborhood” of a parametric model
(robust statistics in principle has nothing to do with nonparametric statistics, although
there are some confusing historical connections); M -estimators (or estimating equations; a
slight generalization of maximum likelihood estimators, often considered under a different
model); influence curve or influence function (Hampel 1974), describing the first derivative
of a statistic considered as functional on the space of (empirical) probability distributions
and thus allowing Taylor approximations for the local behavior of a statistic (under slight

2



changes of the data), with several derived numbers such as gross-error sensitivity (measur-
ing local robustness) and the wellknown asymptotic variance (measuring local efficiency or
“goodness” under the ideal model); and breakdown point, which gives the largest fraction
of arbitrary gross errors tolerated before the statistic “breaks down” and becomes totally
unreliable.

The breakdown point BP is thus a global robustness measure (of reliability); it is
often the first and most important number to be looked at before going into the details
of local robustness properties. It is also often quite simple: for the arithmetic mean it
is 0, for the median it is 1/2 (slightly less than 1/2 of the data can move to infinity
while the median still stays in the range of the “good” data). Among scale estimators,
standard deviation, mean deviation and range all have BP = 0, while the interquartile
range (difference between 3rd and 1st quartile, perhaps with a factor) has BP = 1/4. But
the counterpart of the median among scale estimators is the median (absolute) deviation
or “MAD” (Hampel 1968, 1974), which is the median of the absolute differences of the
data from their median, and which has BP = 1/2. It is a very useful basis for scaling of
M -estimators and for reliable rejection of outliers.

M -estimators can almost equivalently be described by a ρ-function (posing a minimiza-
tion problem) or by its derivative, a ψ-function (yielding a (set of) implicit equation(s)),
which is proportional to the influence function. In the location case, boundedness of ψ (al-
most) yields robustness, as in the case of the famous Huber-estimator (whose ψ is constant
– linearly increasing – constant); this estimator solves a minimax problem for the gross-
error model, thus being an optimal compromise for a whole neighborhood of the normal
model, while still being numerically almost optimal under (fictitious) strict normality. Its
ψ is monotone, so that the set of solutions of the implicit equation is unique (or at least
convex), but so that distant outliers still have maximum (though bounded) influence and
lead to avoidable efficiency losses of about 10-20 percent in typical cases with outliers.

To avoid these losses, one can use smoothly redescending M -estimators, such as 25A,
the 2-4-8 estimator, or Tukey’s biweight, with ρ being bounded and ψ continuously becom-
ing zero for large |x|. They reject distant outliers completely, but not suddenly, allowing
a transitional zone of increasing doubt, and are therefore much more efficient than “hard”
rejection rules; they are usually about as good to clearly better than Huber-estimators,
being only marginally worse in the case where Huber-estimators are optimal. They may
lead to multiple solutions: this can become a problem especially in higher dimensions,
where a reliable starting value is needed.

M -estimators can be generalized directly to multiple regression or linear (and nonlin-
ear) models. Already in simple linear regression, we meet the important additional concept
of “leverage points”, highly influential outlying points in the design space, which always
should be checked separately; they may be most informative or most detrimental (namely
if they are gross errors). So-called Huber-type regression is not robust against a leverage
point (with its y) moving to ∞; but so-called Mallows-type and Schweppe-type regression
can tolerate a small positive fraction of gross errors if the number p of parameters (or,
roughly, independent variables) is still small. Unfortunately, Maronna (1976) and others
showed that for all “nice” procedures, BP ≤ 1

p . There are now various “high breakdown
point procedures” (cf. Rousseeuw & Leroy 1987) which have nominal BP = 1/2 for all
dimensions, but which typically can only be approximated and need a lot of computing
power, so they, too, can only be used for rather low-dimensional parameter spaces.

The breakdown aspects for structured designs (regression, analysis of variance, electric
power networks, nonlinear models...) warrant more than a single number to capture the
relevant phenomena (which outliers can cause what damage?), and creative solutions for
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specific models are still being asked for (cf. Hampel 2000, Mili et al. 1990, and Ruckstuhl
1997).
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